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The process of heating of a porous body that is initially at a low temperature by an incompressible liquid or 

gas flow is considered. The amount of heat energy that cannot be transferred to the porous layer because of 

the temperature difference between the liquid (or gas) and solid phases, respectively, is calculated. This 

energy may be considered "excess" energy. Its quantity is calculated analytically for the case of heating of a 

semi-infinite porous body. 

One of the most important applications of porous media is their use in thermal energy accumulation systems. 

Calculation of heat- and mass-transfer processes in porous bodies is important for increasing the operational 

efficiency of such systems. It is therefore not surprising that the contemporary foreign literature gives close attention 

to the simulation of processes of heat and mass transfer in porous media. In [1-4 ] we find consideration and 

numerical investigation of a very general system of differential equations that describe forced convection of liquid 

or gas through a porous body in the absence of thermal equilibrium between the liquid (gaseous) and solid phases. 
Based on this model, some energy characteristics of the process of heat accumulation in a porous layer were 

investigated numerically in [5 ]. 
Below, an analytical study of the process of heating of a semi-infinite porous body by an incompressible 

liquid (gas) flow is performed. A two-phase model of the porous body is used that includes two energy equations: 

for the liquid and solid phases. The amount of heat that cannot be transferred to the porous matrix by the liquid 

(gaseous) phase because of the temperature difference between the phases is calculated. This heat cannot be 

accumulated by the solid phase and is therefore considered "excess" thermal energy. To the knowledge of the 

present author, this work is the first attempt to calculate the amount of excess energy in heating of a porous body. 

It should be emphasized that previous analytical investigations of processes of heat and mass transfer in a 

porous body carried out on the basis of a model with two energy equations [6-10 ] employed productively the model 

of a porous medium suggested by T. Schumann [11 ], in which the thermal conductivity coefficients are neglected 

in the energy equations for both the liquid (gaseous) and solid phases. In the present work, the energy equations 

are taken in their complete forms, without ignoring any of their terms. 

Mathematical Model. To formulate a model for investigation of the problem the following assumptions are 

used: 
�9 the liquid (gaseous) phase is incompressible, and the flow rate in any cross-section of the porous body 

is constant; 
�9 the thermophysical properties of the liquid (gaseous) and solid phases are invariant; 

�9 heat transfer and liquid (gas) flow are one-dimensional. 

Under these assumptions, the mathematical model of [3 ] is simplified to two energy equations for the liquid 

(gaseous) and solid phases, respectively: 
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According to [ 12 ], the coefficient of heat exchange between the liquid (gas) and porous body particles can 

be calculated from the formula 

hs f - Nufs ,~.f "1- ~ s '  (3) 

where fl = 10 if the porous-body particles are spherical. In this expression the value of the Nusselt number for the 

case of Rep > 100 correlates well with the expression given in [131: 

/ 3 ~  2 / 3  Nuts _ 0.255 pr I Keo ~ �9 

The estimates of Nufs at small values of Rep vary between 0.1 and 12, as follows from [14, 15]. 

According to [16 ], the specific surface of contact between the solid and liquid (gaseous) phases can be 

calculated as 

6 (l - e) (4) 
asf = d ' 

and the effective value of the thermal conductivity coefficient for the liquid (gaseous) phase is usually given in the 

form 

~'feff = e~.f. 

For a porous body of fine-grain structure the mean particle diameter d is a small quantity, and, according 

to formulas (3) and (4), the coefficient hsfasf takes large values. This allows one to introduce a small parameter 

into the formula according to the equation 

1 

hsfasf 
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For the method of perturbations to be applied to system (1), (2), we will place it in dimensionless form 

using the following dimensionless variables: 

temperature 

T - T O 
O -  

Tin - T O ' 

space 

~Of) f (Cp)f (Vf) 

= ~'feff -I- ~'seff x 

and time 

T 
[(pf)f (Cp)f (Vf~ 1, 2 ' 

[e (pf>f (Cp)f -I- (1 -- e) (/9s> s (Cp) s ] (/~feff + '~seff) " 

According to the results of numerical calculations given in [1-3 ], the difference between the temperatures 

of the solid and liquid phases is small compared to the difference between the initial temperature of the liquid (gas) 
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at the entrance to the porous body and the initial temperature of the porous body itself. It is assumed that the solid- 
phase temperature can be rerpresented as 

O s = Of + 5AO, (5) 

and system of equations (1), (2) will be given in the form 

aof aof 020f (6) 
- -  + - + 
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AO = 
0Of 0Of  02Of 

+ AI _ _  _ A 2 _ _  (7) 
2 ' 

where 

A l = 
{of) f (Cp)f + (1 - e) {Os) s (Cp)s . 

e {of) f (Cp)f 

~feff [e ~0f) f (Cp)f + ( l  -- E) ~0~ s (Cp) s ] 

A2 = e ~of) f (cp)f (~feff + ~ f f  ) 

Equation (6) results from the addition of formulas (1) and (2), and Eq. (7) represents relation (1) in 
dimensionless form with allowance for formula (5). 

Solution of the Problem and Analysis. Suppose there is a semi-infinite porous body (~ > 0, where ~ = 0 is 

the boundary) which at the initial instant of time t = 0 is at a constant temperature T 0. Entering through the 
boundary ~ = 0 into the porous body at a constant velocity is an incompressible liquid (gas) whose temperature at 

the boundary Tin is higher than the initial temperature of the porous body. The initial and boundary conditions 

for the function Of can be presented in the form: 

oOf 
O f ( ~ , 0 ) = 0 ,  Of(0,  r ) =  1, W ( ~ 1 7 6  (8) 

A solution of Eq. (6) subject to initial and boundary conditions (8) is obtained by using the Laplace 
transform: 

+ -2 exp (~) erfc [-2-~-r ] " (9) 

According to Eqs. (7) and (9), the difference between the temperatures of the liquid (gaseous) and solid 

phases can be determined from the formula 

A O - 4 - ~ _ ~  r ( ~ + O e x p  - ~ + ( * - O e x p  ~ -  [ 2 v 7 )  

expf-I / t t" ( l o )  

We calculate two physically important integral characteristics of solution (10). It is easily shown that for 

large values of r the integral of the temperature difference AO over the semi-infinite porous body is equal to 
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Fig. 1. Dependence of the function -11(3 ) on time at different values of AI 

and A2: 1) AI -- 13, A 2 = 4.33; 2) 13 and 2.6; 3) 11 and 2.2; 4) 7 and 2.33; 
5) 7 and 1.4. 

7 l - A 2  ( 4 )  1 - A '  I ( - ~ ) ]  I 1(3)= A O d ~ - - -  exp - + ~  1 + e r r  
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The function -11(3 ) characterizes the amount of excess energy that cannot be transferred to the porous body by 

the liquid (gaseous) phase because of the temperature difference between them. We consider this energy a measure 
of the departure of the process from local thermodynamic equilibrium (when the temperatures of the solid and 
liquid phases are equal). For a process occurring under local thermodynamic equilibrium, the amount of excess 

energy is exactly equal to zero. The larger this amount, the larger the departure from equilibrium. 
The dependence of the function -I1(3) on time for different values of A 1 and A2 (they are determined by 

the values of the ratios (pf)f(Cp)f/(ps)S(Cp)s and ,~.fef/,~sef and by the porosity e) is shown in Fig. 1. From this figure 
it follows that the amount of excess energy increases with time until it attains a certain asymptotic value that 
depends on the thermophysical properties of the solid and liquid phases, porosity, and the mass flow rate of the 
liquid phase. Returning to dimensional variables, the amount of excess energy per unit area of the boundary surface 
through which the liquid enters has the form 

E (3) = ~ (r (Dr) f [(Tf) f - (Ts) s I dx --- - (cp)f (/of) f (Tin - TO) ('~'feff + '~seff) 
0 (cp)f (pf)t (vf) 

~ I  1 ( , ) .  

When 3 -* oo (correspondingly for t --, oo), the amount of excess energy tends to 

l im E (1:) - Tin -- T-~0 (1 - e) ~os) s (Cp) s [~of) f (Cp)fl  2 (vf) (1 1) 

~ oo hsf asf [e (pf)f (cp)f + (1 - e) (ps) s (Cp) s ] 

The second integral characteristic shows the time average of the excess energy amount: 

1 12= lira T AOd~ dT = 1 - A l ,  
r-*~ 0 

and with allowance for dimensional variables 

= lim u 
t~ ~ 0 

(Cp)f (,of) f (Tin - TO) (Afeff + ~seff) r = 

(Cp)f ~Of) f (Vf> 
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Tin - T O ( l  - e) (,os) $ (cp) s [(pf)f (r (vf) (12)  

[e ~Of) f (Cp)f 4" (1 -- e) ~os) s (Cp) s ] ~f  asf 

Comparison of Eqs. (11) and (12) shows that the mean amount of excess energy in a heated semi-infinite 

porous body is equal to its amount in the case of t -~ oo 

C O N C L U S I O N S  

1. For the process of heating of a semi-infinite porous body by an incompressible liquid (gas) flow the 

amount of thermal energy that cannot be transferred by the liquid (gaseous) phase to the porous body because of 
the temperature difference between the phases is calculated. This energy is called excess energy. It is shown that 
its amount per unit boundary surface increases with time until it attains a certain constant value which depends on 

the thermophysical properties of the phases, porosity, and the mass flow rate of the liquid (gaseous) phases. 
2. The time average amount of excess energy approaches the same constant value with time. 
The present author is grateful to the A. Humboldt Foundation for a grant to carry out this work. 

N O T A T I O N  

as~, specific surface of contact of the solid and liquid (gaseous) phases, m2/m3; cp, specific heat at constant 
pressure, J / (kg.  K); d, mean diameter of the porous-body particles, m; E, amount of excess energy per unit surface 
area through which heat is supplied, j /m2; E, the same averages over time, j /m2; hsr, coefficient of heat exchange 

between the porous body particles and liquid (gaseous) phase, W/(m 2. K); Nufs, Nusselt number; Re, Reynolds 
number; Pr, Prandtl number; t, time, sec; T, temperature, K; Tin, initial temperature of the liquid (gas), K; v, 
liquid (gas) velocity, m/see; x, coordinate, m; e, porosity; ,~, thermal conductivity, W/ (m. K) ; /z, coefficient of 
dynamic viscosity, P a . s ~ ;  6, small dimensionless parameter; O, dimensionless temperature; p, density, kg/m3; ~, 
dimensionless time; ~, dimensionless coordinate; () ,  mean-value operation over the volume; ( )f, phase average over 
the liquid (gaseous) phase; ( )s, phase average over the solid phase. Subscripts and superscripts: eft, effective value; 

feff, effective value for the liquid (gas); in, value at the boundary x = 0; f, liquid (gaseous) phase; 0, initial value; 

s, solid phase; serf, effective value for the solid phase; p, porosity. 
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